Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Mayo Clin Proc ; 98(2): 301-315, 2023 02.
Article in English | MEDLINE | ID: covidwho-2221124

ABSTRACT

In 2020, chronic obstructive pulmonary disease (COPD) was the fifth leading cause of death in the United States excluding COVID-19, and its mortality burden has been rising since the 1980s. Smoking cessation, long-term oxygen therapy, noninvasive ventilation, and lung volume reduction surgery have had a beneficial effect on mortality; however, until recently, the effects of pharmacologic therapies on all-cause mortality have been unclear. Inhaled pharmacologic treatments for patients with COPD include combinations of long-acting muscarinic receptor antagonists (LAMAs), long-acting-ß2-agonists (LABAs), and inhaled corticosteroids (ICS). The recent IMPACT and ETHOS clinical trials reported mortality benefits with ICS/LAMA/LABA triple therapy compared with LAMA/LABA dual therapy. In IMPACT, fluticasone furoate/umeclidinium/vilanterol therapy significantly reduced the risk of on-/off-treatment all-cause mortality vs umeclidinium/vilanterol (hazard ratio, 0.72; 95% CI, 0.53 to 0.99; P=.042). The ETHOS trial found a reduction in the risk of on-/off-treatment all-cause mortality in patients treated with budesonide/glycopyrrolate/formoterol vs glycopyrrolate/formoterol (hazard ratio, 0.51 [0.33 to 0.80]; nominal P=.0035). Both trials included populations of patients with symptomatic COPD at high risk of future exacerbations, and a post hoc analysis of the final retrieved vital status data suggested that the observed mortality benefits are conferred by the ICS component. In conclusion, triple therapy reduces the risk of mortality in patients with symptomatic COPD characterized by moderate or severe airflow obstruction and a recent history of moderate or severe exacerbations. This benefit is likely to be driven by reductions in exacerbations. Future research efforts should focus on improving the long-term prognosis of patients living with COPD.


Subject(s)
Drug Therapy, Combination , Pulmonary Disease, Chronic Obstructive , Humans , Administration, Inhalation , Adrenal Cortex Hormones/administration & dosage , Bronchodilator Agents , COVID-19 , Formoterol Fumarate/therapeutic use , Glycopyrrolate/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Drug Therapy, Combination/adverse effects
2.
J Med Virol ; 94(4): 1745-1747, 2022 04.
Article in English | MEDLINE | ID: covidwho-1718409

ABSTRACT

Methylprednisolone (MP) is usually used to reduce inflammation reaction and tissue damage, which may have a beneficial treatment effect on coronavirus disease 2019 (COVID-19). However, we present the case of a child who manifests significant bradycardia with the use of just low dose MP on the premise of the long-term use of arbidol. Arbidol can affect the activity of CYP3A4, which is also a key metabolic enzyme of MP by competitive inhibition, and which is easy to aggravate the side effects of MP. Therefore, more attention should be paid to bradycardia occurrence in the patient with COVID-19 when MP is considered in COVID-19.


Subject(s)
Anti-Inflammatory Agents/adverse effects , Bradycardia/chemically induced , COVID-19 Drug Treatment , Methylprednisolone/adverse effects , Antiviral Agents/adverse effects , COVID-19/diagnosis , Child , Drug Therapy, Combination/adverse effects , Humans , Indoles/adverse effects , Male , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Sulfides/adverse effects
3.
Drug Saf ; 43(7): 657-660, 2020 07.
Article in English | MEDLINE | ID: covidwho-1482335

ABSTRACT

INTRODUCTION: Hydroxychloroquine was recently promoted in patients infected with COVID-19 infection. A recent experimental study has suggested an increased toxicity of hydroxychloroquine in association with metformin in mice. OBJECTIVE: The present study was undertaken to investigate the reality of this putative drug-drug interaction between hydroxychloroquine and metformin using pharmacovigilance data. METHODS: Using VigiBase®, the WHO pharmacovigilance database, we performed a disproportionality analysis (case/non-case study). Cases were reports of fatal outcomes with the drugs of interest and non-cases were all other reports for these drugs registered between 1 January 2000 and 31 December 2019. Data with hydroxychloroquine (or metformin) alone were compared with the association hydroxychloroquine + metformin. Results are reported as ROR (reporting odds ratio) with their 95% confidence interval. RESULTS: Of the 10,771 Individual Case Safety Reports (ICSR) involving hydroxychloroquine, 52 were recorded as 'fatal outcomes'. In comparison with hydroxychloroquine alone, hydroxychloroquine + metformin was associated with an ROR value of 57.7 (23.9-139.3). In comparison with metformin alone, hydroxychloroquine + metformin was associated with an ROR value of 6.0 (2.6-13.8). CONCLUSION: Our study identified a signal for the association hydroxychloroquine + metformin that appears to be more at risk of fatal outcomes (particularly by completed suicides) than one of the two drugs when given alone.


Subject(s)
Coronavirus Infections , Drug Interactions , Drug Therapy, Combination , Hydroxychloroquine , Metformin , Pandemics , Pneumonia, Viral , Adult , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/mortality , Female , Humans , Hydroxychloroquine/pharmacokinetics , Hydroxychloroquine/therapeutic use , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Male , Metformin/pharmacokinetics , Metformin/therapeutic use , Middle Aged , Pharmacovigilance , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , SARS-CoV-2
4.
JAMA Netw Open ; 4(10): e2129639, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1473778

ABSTRACT

Importance: Although tumor necrosis factor (TNF) inhibitors are widely prescribed globally because of their ability to ameliorate shared immune pathways across immune-mediated inflammatory diseases (IMIDs), the impact of COVID-19 among individuals with IMIDs who are receiving TNF inhibitors remains insufficiently understood. Objective: To examine the association between the receipt of TNF inhibitor monotherapy and the risk of COVID-19-associated hospitalization or death compared with other commonly prescribed immunomodulatory treatment regimens among adult patients with IMIDs. Design, Setting, and Participants: This cohort study was a pooled analysis of data from 3 international COVID-19 registries comprising individuals with rheumatic diseases, inflammatory bowel disease, and psoriasis from March 12, 2020, to February 1, 2021. Clinicians directly reported COVID-19 outcomes as well as demographic and clinical characteristics of individuals with IMIDs and confirmed or suspected COVID-19 using online data entry portals. Adults (age ≥18 years) with a diagnosis of inflammatory arthritis, inflammatory bowel disease, or psoriasis were included. Exposures: Treatment exposure categories included TNF inhibitor monotherapy (reference treatment), TNF inhibitors in combination with methotrexate therapy, TNF inhibitors in combination with azathioprine/6-mercaptopurine therapy, methotrexate monotherapy, azathioprine/6-mercaptopurine monotherapy, and Janus kinase (Jak) inhibitor monotherapy. Main Outcomes and Measures: The main outcome was COVID-19-associated hospitalization or death. Registry-level analyses and a pooled analysis of data across the 3 registries were conducted using multilevel multivariable logistic regression models, adjusting for demographic and clinical characteristics and accounting for country, calendar month, and registry-level correlations. Results: A total of 6077 patients from 74 countries were included in the analyses; of those, 3215 individuals (52.9%) were from Europe, 3563 individuals (58.6%) were female, and the mean (SD) age was 48.8 (16.5) years. The most common IMID diagnoses were rheumatoid arthritis (2146 patients [35.3%]) and Crohn disease (1537 patients [25.3%]). A total of 1297 patients (21.3%) were hospitalized, and 189 patients (3.1%) died. In the pooled analysis, compared with patients who received TNF inhibitor monotherapy, higher odds of hospitalization or death were observed among those who received a TNF inhibitor in combination with azathioprine/6-mercaptopurine therapy (odds ratio [OR], 1.74; 95% CI, 1.17-2.58; P = .006), azathioprine/6-mercaptopurine monotherapy (OR, 1.84; 95% CI, 1.30-2.61; P = .001), methotrexate monotherapy (OR, 2.00; 95% CI, 1.57-2.56; P < .001), and Jak inhibitor monotherapy (OR, 1.82; 95% CI, 1.21-2.73; P = .004) but not among those who received a TNF inhibitor in combination with methotrexate therapy (OR, 1.18; 95% CI, 0.85-1.63; P = .33). Similar findings were obtained in analyses that accounted for potential reporting bias and sensitivity analyses that excluded patients with a COVID-19 diagnosis based on symptoms alone. Conclusions and Relevance: In this cohort study, TNF inhibitor monotherapy was associated with a lower risk of adverse COVID-19 outcomes compared with other commonly prescribed immunomodulatory treatment regimens among individuals with IMIDs.


Subject(s)
Arthritis, Rheumatoid/drug therapy , COVID-19/mortality , Inflammatory Bowel Diseases/drug therapy , Psoriasis/drug therapy , Tumor Necrosis Factor Inhibitors/therapeutic use , Adult , Arthritis, Rheumatoid/epidemiology , Comorbidity , Drug Therapy, Combination/adverse effects , Female , Hospitalization/statistics & numerical data , Humans , Inflammatory Bowel Diseases/epidemiology , Male , Middle Aged , Pandemics , Psoriasis/epidemiology , Registries , Retrospective Studies , SARS-CoV-2
5.
Am J Health Syst Pharm ; 77(17): 1409-1416, 2020 08 20.
Article in English | MEDLINE | ID: covidwho-1317900

ABSTRACT

PURPOSE: The global coronavirus disease 2019 (COVID-19) pandemic has created unprecedented strains on healthcare systems around the world. Challenges surrounding an overwhelming influx of patients with COVID-19 and changes in care dynamics prompt the need for care models and processes that optimize care in this medically complex patient population. The purpose of this report is to describe our institution's strategy to deploy pharmacy resources and standardize pharmacy processes to optimize the management of patients with COVID-19. METHODS: This retrospective, descriptive report characterizes documented pharmacy interventions in the acute care of patients admitted for COVID-19 during the period April 1 to April 15, 2020. Patient monitoring, interprofessional communication, and intervention documentation by pharmacy staff was facilitated through the development of a COVID-19-specific care bundle integrated into the electronic medical record. RESULTS: A total of 1,572 pharmacist interventions were documented in 197 patients who received a total of 15,818 medication days of therapy during the study period. The average number of interventions per patient was 8. The most common interventions were regimen simplification (15.9%), timing and dosing adjustments (15.4%), and antimicrobial therapy and COVID-19 treatment adjustments (15.2%). Patients who were admitted to an intensive care unit care at any point during their hospital stay accounted for 66.7% of all interventions documented. CONCLUSION: A pharmacy department's response to the COVID-19 pandemic was optimized through standardized processes. Pharmacists intervened to address a wide scope of medication-related issues, likely contributing to improved management of COVID-19 patients. Results of our analysis demonstrate the vital role pharmacists play as members of multidisciplinary teams during times of crisis.


Subject(s)
COVID-19 Drug Treatment , Medication Therapy Management/organization & administration , Pharmacists/organization & administration , Pharmacy Service, Hospital/organization & administration , Aged , Aged, 80 and over , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Anticoagulants/administration & dosage , Anticoagulants/adverse effects , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19/epidemiology , Critical Care/organization & administration , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Electrolytes/administration & dosage , Electrolytes/adverse effects , Female , Hospital Mortality , Humans , Intensive Care Units/organization & administration , Interdisciplinary Communication , Male , Medical Records Systems, Computerized/organization & administration , Middle Aged , Pandemics/prevention & control , Professional Role , Retrospective Studies , Treatment Outcome
6.
Immun Inflamm Dis ; 9(3): 617-621, 2021 09.
Article in English | MEDLINE | ID: covidwho-1212748

ABSTRACT

The coronavirus disease (COVID-19), during its course, may involve several organs, including the skin with a petechial skin rash, urticaria and erythematous rash, or varicella-like eruption, representing an additional effect of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as commonly observed in other viral diseases. Considering that symptomatic patients with COVID-19 generally undergo multidrug treatments, the occurrence of a possible adverse drug reaction presenting with cutaneous manifestations should be contemplated. Pleomorphic skin eruptions occurred in a 59-year-old Caucasian woman, affected by a stable form of chronic lymphocytic leukemia, and symptomatic SARS-CoV-2 infection, treated with a combination of hydroxychloroquine sulfate, darunavir, ritonavir, sarilumb, omeprazole, ceftriaxone, high-flow oxygen therapy devices, filgrastim (Zarzio®) as a single injection, and enoxaparin. The patient stopped all treatment but oxygen and enoxaparin were continued and the patient received a high-dose Desametasone with complete remission of dermatological impairment in 10 days. It is very important to differentially diagnose COVID-19 disease-related cutaneous manifestations, where is justified to continue the multidrug antiviral treatment, from those caused by an adverse drug reaction, where it would be necessary to identify the possible culprit drug and to start appropriate antiallergic treatment.


Subject(s)
COVID-19 , Exanthema , Antiviral Agents/adverse effects , COVID-19/complications , Drug Therapy, Combination/adverse effects , Exanthema/drug therapy , Exanthema/virology , Female , Humans , Hydroxychloroquine , Middle Aged
7.
Drug Saf ; 44(6): 635-644, 2021 06.
Article in English | MEDLINE | ID: covidwho-1188213

ABSTRACT

INTRODUCTION AND OBJECTIVE: Ivermectin (IVM) and doxycycline (DOXY) have demonstrated in-vitro activity against SARS-CoV-2, and have a reasonable safety profile. The objective of this systematic review was to explore the evidence in the literature on the safety and efficacy of their use as monotherapy and combination therapy in COVID-19 management. METHODS: After prospectively registering the study protocol with the Open Science Framework, we searched PubMed, Google Scholar, clinicaltrials.gov, various pre-print servers and reference lists for relevant records published until 16 February, 2021 using appropriate search strategies. Baseline features and data pertaining to efficacy and safety outcomes were extracted separately for IVM monotherapy, DOXY monotherapy, and IVM + DOXY combination therapy. Methodological quality was assessed based on the study design. RESULTS: Out of 200 articles screened, 19 studies (six retrospective cohort studies, seven randomised controlled trials, five non-randomised trials, one case series) with 8754 unique patients with multiple stages of COVID-19 were included; four were pre-prints and one was an unpublished clinicaltrials.gov document. The comparator was standard care and 'hydroxychloroquine + azithromycin' in seven and three studies respectively, and two studies were placebo controlled; six studies did not have a comparator. IVM monotherapy, DOXY monotherapy and IVM + DOXY were explored in eight, five and five studies, respectively; one study compared IVM monotherapy and IVM + DOXY with placebo. While all studies described efficacy, the safety profile was described in only six studies. Efficacy outcomes were mixed with some studies concluding in favour of the intervention and some studies displaying no significant benefit; barring one study that described 9/183 patients with erosive esophagitis and non-ulcer dyspepsia with IVM + DOXY (without causality assessment details), there were no new safety signals of concern with any of the three interventions considered. The quality of studies varied widely, with five studies having a 'good' methodological quality. CONCLUSIONS: Evidence is not sufficiently strong to either promote or refute the efficacy of IVM, DOXY, or their combination in COVID-19 management. SYSTEMATIC REVIEW PROTOCOL REGISTRATION DETAILS: Open Science Framework: https://osf.io/n7r2j .


Subject(s)
COVID-19 Drug Treatment , Doxycycline/pharmacology , Ivermectin/pharmacology , SARS-CoV-2/drug effects , Anti-Infective Agents/pharmacology , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Humans , Treatment Outcome
8.
Clin Transl Sci ; 14(3): 1155-1165, 2021 05.
Article in English | MEDLINE | ID: covidwho-1159224

ABSTRACT

Only a handful of US Food and Drug Administration (FDA) Emergency Use Authorizations exist for drug and biologic therapeutics that treat severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. Potential therapeutics include repurposed drugs, some with cardiac liabilities. We report on a chronic preclinical drug screening platform, a cardiac microphysiological system (MPS), to assess cardiotoxicity associated with repurposed hydroxychloroquine (HCQ) and azithromycin (AZM) polytherapy in a mock phase I safety clinical trial. The MPS contained human heart muscle derived from induced pluripotent stem cells. The effect of drug response was measured using outputs that correlate with clinical measurements, such as QT interval (action potential duration) and drug-biomarker pairing. Chronic exposure (10 days) of heart muscle to HCQ alone elicited early afterdepolarizations and increased QT interval past 5 days. AZM alone elicited an increase in QT interval from day 7 onward, and arrhythmias were observed at days 8 and 10. Monotherapy results mimicked clinical trial outcomes. Upon chronic exposure to HCQ and AZM polytherapy, we observed an increase in QT interval on days 4-8. Interestingly, a decrease in arrhythmias and instabilities was observed in polytherapy relative to monotherapy, in concordance with published clinical trials. Biomarkers, most of them measurable in patients' serum, were identified for negative effects of monotherapy or polytherapy on tissue contractile function, morphology, and antioxidant protection. The cardiac MPS correctly predicted clinical arrhythmias associated with QT prolongation and rhythm instabilities. This high content system can help clinicians design their trials, rapidly project cardiac outcomes, and define new monitoring biomarkers to accelerate access of patients to safe coronavirus disease 2019 (COVID-19) therapeutics.


Subject(s)
Arrhythmias, Cardiac/chemically induced , Azithromycin/adverse effects , COVID-19 Drug Treatment , Hydroxychloroquine/adverse effects , SARS-CoV-2 , Cardiotoxicity , Clinical Trials as Topic , Drug Therapy, Combination/adverse effects , Humans , Long QT Syndrome/chemically induced
9.
Biomed Res Int ; 2021: 8821318, 2021.
Article in English | MEDLINE | ID: covidwho-1083860

ABSTRACT

The off-label use of antiviral and antimalarial drugs has been considered by many researchers as a fast and relatively safe alternative to provide therapeutic options to treat COVID-19, but the assessment of such drug-specific effectiveness in this regard is far from complete. Especially, the current body of knowledge about COVID-19 therapeutics needs more data regarding drug effectiveness and safety in the severely ill patients with comorbidities. In the present article, we retrospectively analyze data from 61 patients that received treatment with chloroquine, lopinavir/ritonavir, both drugs administered together, or a standard treatment with no antiviral drugs, and the study was carried in severely ill patients. We found that either drug is ineffective at treating COVID-19, as they are not able to reduce hospitalization length, mortality, C-reactive protein (CRP), lactate dehydrogenase (LDH), d-Dimer, or ferritin, or to enhance gasometric parameters, lymphocytes, total leukocytes, and neutrophil levels, whereas both drugs administered together decrease circulating lymphocytes, increase LDH and ferritin levels, and more importantly, enhance mortality. In this way, our results show that both drugs are ineffective and even potentially harmful alternatives against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Chloroquine/adverse effects , Chloroquine/therapeutic use , Lopinavir/adverse effects , Lopinavir/therapeutic use , Ritonavir/adverse effects , Ritonavir/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Antimalarials/adverse effects , Antimalarials/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/drug effects , Severity of Illness Index , Young Adult
10.
Trials ; 22(1): 71, 2021 Jan 20.
Article in English | MEDLINE | ID: covidwho-1067260

ABSTRACT

BACKGROUND: SARS-CoV-2, the virus that causes COVID-19, enters the cells through a mechanism dependent on its binding to angiotensin-converting enzyme 2 (ACE2), a protein highly expressed in the lungs. The putative viral-induced inhibition of ACE2 could result in the defective degradation of bradykinin, a potent inflammatory substance. We hypothesize that increased bradykinin in the lungs is an important mechanism driving the development of pneumonia and respiratory failure in COVID-19. METHODS: This is a phase II, single-center, three-armed parallel-group, open-label, active control superiority randomized clinical trial. One hundred eighty eligible patients will be randomly assigned in a 1:1:1 ratio to receive either the inhibitor of C1e/kallikrein 20 U/kg intravenously on day 1 and day 4 plus standard care; or icatibant 30 mg subcutaneously, three doses/day for 4 days plus standard care; or standard care alone, as recommended in the clinical trials published to date, which includes supplemental oxygen, non-invasive and invasive ventilation, antibiotic agents, anti-inflammatory agents, prophylactic antithrombotic therapy, vasopressor support, and renal replacement therapy. DISCUSSION: Accumulation of bradykinin in the lungs is a common side effect of ACE inhibitors leading to cough. In animal models, the inactivation of ACE2 leads to severe acute pneumonitis in response to lipopolysaccharide (LPS), and the inhibition of bradykinin almost completely restores the lung structure. We believe that inhibition of bradykinin in severe COVID-19 patients could reduce the lung inflammatory response, impacting positively on the severity of disease and mortality rates. TRIAL REGISTRATION: Brazilian Clinical Trials Registry Universal Trial Number (UTN) U1111-1250-1843. Registered on May/5/2020.


Subject(s)
Bradykinin/analogs & derivatives , COVID-19 Drug Treatment , Complement C1 Inhibitor Protein/administration & dosage , Respiratory Insufficiency/drug therapy , Adult , Angiotensin-Converting Enzyme 2/metabolism , Bradykinin/administration & dosage , Bradykinin/adverse effects , Bradykinin/antagonists & inhibitors , Bradykinin/immunology , Bradykinin/metabolism , Bradykinin B2 Receptor Antagonists/administration & dosage , Bradykinin B2 Receptor Antagonists/adverse effects , Brazil , COVID-19/complications , COVID-19/immunology , COVID-19/virology , Clinical Trials, Phase II as Topic , Complement C1 Inhibitor Protein/adverse effects , Drug Administration Schedule , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Humans , Injections, Intravenous , Injections, Subcutaneous , Kallikreins/antagonists & inhibitors , Kallikreins/metabolism , Randomized Controlled Trials as Topic , Respiratory Insufficiency/immunology , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Severity of Illness Index , Treatment Outcome
11.
Am J Health Syst Pharm ; 78(7): 568-577, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1066254

ABSTRACT

KEY POINTS: In a multicenter point-prevalence study, we found that the rate of supportive care was high; among those receiving COVID-19 drug therapies, adverse reactions occurred in 12% of patients. PURPOSE: There are currently no FDA-approved medications for the treatment of coronavirus disease 2019 (COVID-19). At the onset of the pandemic, off-label medication use was supported by limited or no clinical data. We sought to characterize experimental COVID-19 therapies and identify safety signals during this period. METHODS: We conducted a noninterventional, multicenter, point prevalence study of patients hospitalized with suspected/confirmed COVID-19. Clinical and treatment characteristics within a 24-hour window were evaluated in a random sample of up to 30 patients per site. The primary objective was to describe COVID-19-targeted therapies. The secondary objective was to describe adverse drug reactions (ADRs). RESULTS: A total of 352 patients treated for COVID-19 at 15 US hospitals From April 18 to May 8, 2020, were included in the study. Most patients were treated at academic medical centers (53.4%) or community hospitals (42.6%). Sixty-seven patients (19%) were receiving drug therapy in addition to supportive care. Drug therapies used included hydroxychloroquine (69%), remdesivir (10%), and interleukin-6 antagonists (9%). Five patients (7.5%) were receiving combination therapy. The rate of use of COVID-19-directed drug therapy was higher in patients with vs patients without a history of asthma (14.9% vs 7%, P = 0.037) and in patients enrolled in clinical trials (26.9% vs 3.2%, P < 0.001). Among those receiving drug therapy, 8 patients (12%) experienced an ADR, and ADRs were recognized at a higher rate in patients enrolled in clinical trials (62.5% vs 22%; odds ratio, 5.9; P = 0.028). CONCLUSION: While we observed high rates of supportive care for patients with COVID-19, we also found that ADRs were common among patients receiving drug therapy, including those enrolled in clinical trials. Comprehensive systems are needed to identify and mitigate ADRs associated with experimental COVID-19 treatments.


Subject(s)
COVID-19 Drug Treatment , Drug Therapy, Combination/statistics & numerical data , Drug-Related Side Effects and Adverse Reactions/epidemiology , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Child , Child, Preschool , Drug Therapy, Combination/adverse effects , Female , Humans , Hydroxychloroquine/adverse effects , Hydroxychloroquine/therapeutic use , Infant , Infant, Newborn , Male , Middle Aged , Pandemics , Prevalence , Retrospective Studies , United States/epidemiology , Young Adult
12.
JAMA Dermatol ; 156(12): 1333-1343, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1008230

ABSTRACT

Importance: Baricitinib, an oral selective Janus kinase 1 and 2 inhibitor, effectively reduced disease severity in moderate to severe atopic dermatitis (AD) in 2 phase 3 monotherapy studies. Objective: To assess the efficacy and safety of 4 mg and 2 mg of baricitinib in combination with background topical corticosteroid (TCS) therapy in adults with moderate to severe AD who previously had an inadequate response to TCS therapy. Design, Setting, and Participants: This double-blind, placebo-controlled, phase 3 randomized clinical trial, BREEZE-AD7 (Study of Baricitinib [LY3009104] in Combination With Topical Corticosteroids in Adults With Moderate to Severe Atopic Dermatitis) was conducted from November 16, 2018, to August 22, 2019, at 68 centers across 10 countries in Asia, Australia, Europe, and South America. Patients 18 years or older with moderate to severe AD and an inadequate response to TCSs were included. After completing the study, patients were followed up for up to 4 weeks or enrolled in a long-term extension study. Interventions: Patients were randomly assigned (1:1:1) to receive 2 mg of baricitinib once daily (n = 109), 4 mg of baricitinib once daily (n = 111), or placebo (n = 109) for 16 weeks. The use of low-to-moderate potency TCSs was allowed. Main Outcomes and Measures: The primary end point was the proportion of patients achieving a validated Investigator Global Assessment for Atopic Dermatitis (vIGA-AD) score of 0 (clear) or 1 (almost clear), with a 2-point or greater improvement from baseline at week 16. Results: Among 329 patients (mean [SD] age, 33.8 [12.4] years; 216 [66%] male), at week 16, a vIGA-AD score of 0 (clear) or 1 (almost clear) was achieved by 34 patients (31%) receiving 4 mg of baricitinib and 26 (24%) receiving 2 mg of baricitinib compared with 16 (15%) receiving placebo (odds ratio vs placebo, 2.8 [95% CI, 1.4-5.6]; P = .004 for the 4-mg group; 1.9 [95% CI, 0.9-3.9]; P = .08 for the 2-mg group). Treatment-emergent adverse events were reported in 64 of 111 patients (58%) in the 4-mg group, 61 of 109 patients (56%) in the 2-mg group, and 41 of 108 patients (38%) in the placebo group. Serious adverse events were reported in 4 patients (4%) in the 4-mg group, 2 (2%) in the 2-mg group, and 4 (4%) in the placebo group. The most common adverse events were nasopharyngitis, upper respiratory tract infections, and folliculitis. Conclusions and Relevance: A dose of 4 mg of baricitinib in combination with background TCS therapy significantly improved the signs and symptoms of moderate to severe AD, with a safety profile consistent with previous studies of baricitinib in AD. Trial Registration: ClinicalTrials.gov Identifier: NCT03733301.


Subject(s)
Azetidines/administration & dosage , Dermatitis, Atopic/drug therapy , Glucocorticoids/administration & dosage , Purines/administration & dosage , Pyrazoles/administration & dosage , Sulfonamides/administration & dosage , Administration, Cutaneous , Administration, Oral , Adult , Azetidines/adverse effects , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/immunology , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Female , Folliculitis/chemically induced , Folliculitis/epidemiology , Folliculitis/immunology , Glucocorticoids/adverse effects , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Male , Middle Aged , Nasopharyngitis/chemically induced , Nasopharyngitis/epidemiology , Nasopharyngitis/immunology , Purines/adverse effects , Pyrazoles/adverse effects , Respiratory Tract Infections/chemically induced , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/immunology , Severity of Illness Index , Signal Transduction/drug effects , Signal Transduction/immunology , Sulfonamides/adverse effects , Young Adult
13.
Trials ; 22(1): 3, 2021 Jan 04.
Article in English | MEDLINE | ID: covidwho-1007149

ABSTRACT

OBJECTIVES: To investigate the efficacy and safety of repurposed antiprotozoal and antiretroviral drugs, nitazoxanide and atazanavir/ritonavir, in shortening the time to clinical improvement and achievement of SARS-CoV-2 polymerase chain reaction (PCR) negativity in patients diagnosed with moderate to severe COVID-19. TRIAL DESIGN: This is a pilot phase 2, multicentre 2-arm (1:1 ratio) open-label randomised controlled trial. PARTICIPANTS: Patients with confirmed COVID-19 diagnosis (defined as SARS-CoV-2 PCR positive nasopharyngeal swab) will be recruited from four participating isolation and treatment centres in Nigeria: two secondary care facilities (Infectious Diseases Hospital, Olodo, Ibadan, Oyo State and Specialist State Hospital, Asubiaro, Osogbo, Osun State) and two tertiary care facilities (Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State and Olabisi Onabanjo University Teaching Hospital, Sagamu, Ogun State). These facilities have a combined capacity of 146-bed COVID-19 isolation and treatment ward. INCLUSION CRITERIA: Confirmation of SARS-CoV-2 infection by PCR test within two days before randomisation and initiation of treatment, age bracket of 18 and 75 years, symptomatic, able to understand study information and willingness to participate. Exclusion criteria include the inability to take orally administered medication or food, known hypersensitivity to any of the study drugs, pregnant or lactating, current or recent (within 24 hours of enrolment) treatment with agents with actual or likely antiviral activity against SARS-CoV-2, concurrent use of agents with known or suspected interaction with study drugs, and requiring mechanical ventilation at screening. INTERVENTION AND COMPARATOR: Participants in the intervention group will receive 1000 mg of nitazoxanide twice daily orally and 300/100 mg of atazanvir/ritonavir once daily orally in addition to standard of care while participants in the control group will receive only standard of care. Standard of care will be determined by the physician at the treatment centre in line with the current guidelines for clinical management of COVID-19 in Nigeria. MAIN OUTCOME MEASURES: Main outcome measures are: (1) Time to clinical improvement (defined as time from randomisation to either an improvement of two points on a 10-category ordinal scale (developed by the WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection) or discharge from the hospital, whichever came first); (2) Proportion of participants with SARS-CoV-2 polymerase chain reaction (PCR) negative result at days 2, 4, 6, 7, 14 and 28; (3) Temporal patterns of SARS-CoV-2 viral load on days 2, 4, 6, 7, 14 and 28 quantified by RT-PCR from saliva of patients receiving standard of care alone versus standard of care plus study drugs. RANDOMISATION: Allocation of participants to study arm is randomised within each site with a ratio 1:1 based on randomisation sequences generated centrally at Obafemi Awolowo University. The model was implemented in REDCap and includes stratification by age, gender, viral load at diagnosis and presence of relevant comorbidities. BLINDING: None, this is an open-label trial. NUMBER TO BE RANDOMISED (SAMPLE SIZE): 98 patients (49 per arm). TRIAL STATUS: Regulatory approval was issued by the National Agency for Food and Drug Administration and Control on 06 October 2020 (protocol version number is 2.1 dated 06 August 2020). Recruitment started on 9 October 2020 and is anticipated to end before April 2021. TRIAL REGISTRATION: The trial has been registered on ClinicalTrials.gov (July 7, 2020), with identifier number NCT04459286 and on Pan African Clinical Trials Registry (August 13, 2020), with identifier number PACTR202008855701534 . FULL PROTOCOL: The full protocol is attached as an additional file which will be made available on the trial website. In the interest of expediting dissemination of this material, the traditional formatting has been eliminated, and this letter serves as a summary of the key elements in the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
Antiviral Agents/administration & dosage , Atazanavir Sulfate/administration & dosage , COVID-19 Drug Treatment , Ritonavir/administration & dosage , Thiazoles/administration & dosage , Administration, Oral , Adolescent , Adult , Aged , Antiviral Agents/adverse effects , Atazanavir Sulfate/adverse effects , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , Clinical Trials, Phase II as Topic , Drug Administration Schedule , Drug Combinations , Drug Repositioning , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Female , Humans , Male , Middle Aged , Multicenter Studies as Topic , Nigeria , Nitro Compounds , Pilot Projects , RNA, Viral/isolation & purification , Randomized Controlled Trials as Topic , Ritonavir/adverse effects , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Severity of Illness Index , Standard of Care , Thiazoles/adverse effects , Treatment Outcome , Viral Load/drug effects , Young Adult
14.
Trials ; 22(1): 4, 2021 Jan 04.
Article in English | MEDLINE | ID: covidwho-1007148

ABSTRACT

OBJECTIVES: We will evaluate the efficacy and safety of Ivermectin in patients with mild and moderately severe COVID-19. TRIAL DESIGN: This is a phase 3, single-center, randomized, open-label, controlled trial with a 2-arm parallel-group design (1:1 ratio). PARTICIPANTS: The Severe Acute Respiratory Syndrome Departments of the Shahid Mohammadi Hospital, Bandar Abbas, Iran, will screen for patients age ≥ 20 years and weight ≥35 kg for the following criteria: Inclusion criteria for patients with mild COVID-19 symptoms (outpatients) 1. Diagnosed mild pneumonia using computed tomography (CT) and/or chest X-ray (CX-R) imaging, not requiring hospitalization. 2. Signing informed consent. Inclusion criteria for patients with moderate COVID-19 symptoms (inpatients) 1. Confirmed infection using PCR. 2. Diagnosed moderate pneumonia using CT and/or CXR imaging, requiring hospitalization. 3. Hospitalized ≤ 48 hours. 4. Signing informed consent. Exclusion criteria 1. Severe and critical pneumonia due to COVID-19. 2. Underlying diseases, including AIDS, asthma, loiasis, and severe liver and kidney disease. 3. Use of anticoagulants (e.g., warfarin) and ACE inhibitors (e.g., captopril). 4. History of drug allergy to Ivermectin. 5. Pregnancy or breastfeeding. INTERVENTION AND COMPARATOR: Intervention groups: Outpatient and inpatient groups will receive the standard treatment regimen for mild and moderate COVID-19, based on the Iranian Ministry of Health and Medical Education's protocol, along with oral Ivermectin (MSD Company, France) at a single dose of 0.2 mg/kg. Control groups: The outpatient group will receive hydroxychloroquine sulfate (Amin Pharmaceutical Company, Iran) at a dose of 400 mg twice a day for the first day and 200 mg twice a day for seven subsequent days. The inpatient group will receive 200/50 mg Lopinavir/Ritonavir (Heterd Company, India) twice a day for the seven days, plus five doses of 44 mcg Interferon beta-1a (CinnaGen, Iran) every other day. Other supportive and routine care will be the same in both outpatient and inpatient groups. MAIN OUTCOME: The primary outcomes are composite and include the improvement of clinical symptoms and need for hospitalization for outpatient groups, and the length of hospital stay until discharge, the need for ICU admission until discharge, and the need for mechanical ventilation for inpatient groups within seven days of randomization. The secondary outcome is the incidence of serious adverse drug reactions within seven days of randomization. RANDOMIZATION: Patients in both outpatient (mild) and inpatient (moderate) groups will be randomized into the treatment and control groups based on the following method. A simple randomization method and table of random numbers will be used. If the selected number is even, the patient is allocated to the treatment group, and if it is odd, the patient is allocated to the control group in a 1:1 ratio. BLINDING (MASKING): This is an open-label study, and there is not blinding. Numbers to be randomized (sample size) A total number of 120 patients (60 outpatients and 60 patients) will be randomized into two groups (30 patients in each of the intervention groups and 30 patients in each of the control groups). TRIAL STATUS: The protocol is Version 1.0, November 17, 2020. Recruitment began November 25, 2020, and is anticipated to be completed by February 25, 2021. TRIAL REGISTRATION: This clinical trial has been registered in the Iranian Registry of Clinical Trials (IRCT). The registration number is " IRCT20200506047323N6 ". The registration date is November 17, 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting the dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Ivermectin/administration & dosage , SARS-CoV-2/isolation & purification , Administration, Oral , Adult , Antiviral Agents/adverse effects , COVID-19/diagnosis , COVID-19/virology , Clinical Trials, Phase III as Topic , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Female , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Intensive Care Units/statistics & numerical data , Interferon beta-1a/administration & dosage , Interferon beta-1a/adverse effects , Iran , Ivermectin/adverse effects , Length of Stay/statistics & numerical data , Lopinavir/administration & dosage , Lopinavir/adverse effects , Male , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2/drug effects , Severity of Illness Index
15.
Isr Med Assoc J ; 11(22): 665-672, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-948361

ABSTRACT

BACKGROUND: The coronavirus disease-2019 (COVID-19) and its management in patients with epilepsy can be complex. Prescribers should consider potential effects of investigational anti-COVID-19 drugs on seizures, immunomodulation by anti-seizure medications (ASMs), changes in ASM pharmacokinetics, and the potential for drug-drug interactions (DDIs). The goal of the Board of the Israeli League Against Epilepsy (the Israeli Chapter of the International League Against Epilepsy, ILAE) was to summarize the main principles of the pharmacological treatment of COVID-19 in patients with epilepsy. This guide was based on current literature, drug labels, and drug interaction resources. We summarized the available data related to the potential implications of anti-COVID-19 co-medication in patients treated with ASMs. Our recommendations refer to drug selection, dosing, and patient monitoring. Given the limited availability of data, some recommendations are based on general pharmacokinetic or pharmacodynamic principles and might apply to additional future drug combinations as novel treatments emerge. They do not replace evidence-based guidelines, should those become available. Awareness to drug characteristics that increase the risk of interactions can help adjust anti-COVID-19 and ASM treatment for patients with epilepsy.


Subject(s)
Anticonvulsants , Antiviral Agents , COVID-19 Drug Treatment , Drug Interactions , Drug Therapy, Combination , Epilepsy , Medication Therapy Management , Anticonvulsants/classification , Anticonvulsants/pharmacology , Antiviral Agents/classification , Antiviral Agents/pharmacology , Comorbidity , Drug Monitoring/methods , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Drug Therapy, Combination/standards , Drug-Related Side Effects and Adverse Reactions/etiology , Drug-Related Side Effects and Adverse Reactions/prevention & control , Epilepsy/diagnosis , Epilepsy/drug therapy , Epilepsy/epidemiology , Humans , Israel/epidemiology , Medication Therapy Management/standards , Medication Therapy Management/trends , Patient Selection , Practice Guidelines as Topic , Risk Adjustment/methods , Risk Adjustment/trends , SARS-CoV-2
17.
J Am Acad Dermatol ; 83(6): 1738-1748, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-845104

ABSTRACT

The new coronavirus, severe acute respiratory syndrome coronavirus 2, is associated with a wide variety of cutaneous manifestations. Although new skin manifestations caused by COVID-19 are continuously being described, other cutaneous entities should also be considered in the differential diagnosis, including adverse cutaneous reactions to drugs used in the treatment of COVID-19 infections. The aim of this review is to provide dermatologists with an overview of the cutaneous adverse effects associated with the most frequently prescribed drugs in patients with COVID-19. The skin reactions of antimalarials (chloroquine and hydroxychloroquine), antivirals (lopinavir/ritonavir, ribavirin with or without interferon, oseltamivir, remdesivir, favipiravir, and darunavir), and treatments for complications (imatinib, tocilizumab, anakinra, immunoglobulins, corticosteroids, colchicine and low molecular weight heparins) are analyzed. Information regarding possible skin reactions, their frequency, management, and key points for differential diagnosis are presented.


Subject(s)
Coronavirus Infections/drug therapy , Drug Eruptions/diagnosis , Pneumonia, Viral/drug therapy , Antimalarials/adverse effects , Antiviral Agents/adverse effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Colchicine/adverse effects , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/virology , Diagnosis, Differential , Drug Eruptions/etiology , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Exanthema/diagnosis , Exanthema/immunology , Exanthema/virology , Glucocorticoids/adverse effects , Humans , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Urticaria/diagnosis , Urticaria/immunology , Urticaria/virology , COVID-19 Drug Treatment
18.
Comput Math Methods Med ; 2020: 1391583, 2020.
Article in English | MEDLINE | ID: covidwho-831314

ABSTRACT

PURPOSE: We aimed to analyze and evaluate the safety signals of ribavirin-interferon combination through data mining of the US Food and Drug Administration Adverse Event Reporting System (FAERS), so as to provide reference for the rationale use of these agents in the management of relevant toxicities emerging in patients with novel coronavirus pneumonia (COVID-19). METHODS: Reports to the FAERS from 1 January 2004 to 8 March 2020 were analyzed. The proportion of report ratio (PRR), reporting odds ratio (ROR), and Bayesian confidence interval progressive neural network (BCPNN) method were used to detect the safety signals. RESULTS: A total of 55 safety signals were detected from the top 250 adverse event reactions in 2200 reports, but 19 signals were not included in the drug labels. All the detected adverse event reactions were associated with 13 System Organ Classes (SOC), such as gastrointestinal, blood and lymph, hepatobiliary, endocrine, and various nervous systems. The most frequent adverse events were analyzed, and the results showed that females were more likely to suffer from anemia, vomiting, neutropenia, diarrhea, and insomnia. CONCLUSION: The ADE (adverse drug event) signal detection based on FAERS is helpful to clarify the potential adverse events related to ribavirin-interferon combination for novel coronavirus therapy; clinicians should pay attention to the adverse reactions of gastrointestinal and blood systems, closely monitor the fluctuations of the platelet count, and carry out necessary mental health interventions to avoid serious adverse events.


Subject(s)
Coronavirus Infections/drug therapy , Interferons/adverse effects , Pneumonia, Viral/drug therapy , Ribavirin/adverse effects , Adolescent , Adult , Adverse Drug Reaction Reporting Systems , Aged , Algorithms , Bayes Theorem , COVID-19 , Data Mining , Drug Administration Schedule , Drug Therapy, Combination/adverse effects , Female , Humans , Interferons/administration & dosage , Male , Middle Aged , Neural Networks, Computer , Odds Ratio , Pandemics , Patient Safety , Ribavirin/administration & dosage , Young Adult , COVID-19 Drug Treatment
19.
Vascular ; 29(2): 220-227, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-660824

ABSTRACT

BACKGROUND: The world is witnessing an unprecedented crisis with Coronavirus disease 2019 (COVID-19). It is important to accurately analyze the available evidence to provide correct clinical guidance for optimal patient care. We aim to discuss current clinical evidence regarding chloroquine, hydroxychloroquine, azithromycin, remdesivir, and the cardiovascular burden of COVID-19. METHODS: A literature review was performed using PubMed and Google Scholar. Additional clinical trials were identified through the "TrialsTracker" project. RESULTS: We found conflicting evidence of chloroquine, hydroxychloroquine plus azithromycin, and remdesivir in COVID-19 despite promising early reports of in vitro antiviral activity against severe acute respiratory syndrome coronavirus 2. Some of the current studies have demonstrated adverse drug reactions to chloroquine and hydroxychloroquine + azithromycin. Widespread systemic inflammation and procoagulant/hypercoagulable state, including thrombotic microangiopathy, endothelial dysfunction, bleeding disorder, and thrombosis are increasingly being witnessed in COVID-19. Evidence of cardiac injury and stroke is mostly reported in hospitalized patients; however, large specialized studies that focus on cardiac or neuropathology are lacking. DISCUSSION: There is no convincing clinical evidence of chloroquine, hydroxychloroquine with or without azithromycin, and remdesivir use in COVID-19. As evidence of systemic inflammation is rapidly unfolding, there is a dire need to maximize our resources to find the best possible solutions to the current crisis while conclusive evidence from clinical trials emerges.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Azithromycin/pharmacology , COVID-19 Drug Treatment , Cardiovascular Diseases , Chemically-Induced Disorders , Chloroquine/pharmacology , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Antiviral Agents/pharmacology , COVID-19/epidemiology , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/prevention & control , Chemically-Induced Disorders/etiology , Chemically-Induced Disorders/prevention & control , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL